
Creating an ODK form

Instruction Manual



Table of Contents

1: GETTING STARTED 3

2: FORM CREATION ON ODK 3

3: FORM CONVERSION FROM XLS TO XML 12



1: GETTING STARTED

What is ODK?

The Open Data Kit software is an open source software that allows for collecting, managing,
and using data in resource-constrained environments. It allows for the collection of data
offline and submission of the data when internet connectivity is available. It allows users to
aggregate data with full control over the collected data and the servers where this data is
stored.

2: FORM CREATION ON ODK

Form Creation on MS Excel (.xlsx)

1. There is a common format that is to be followed to create the .xlsx form - Base XLS
Form

2. There are 3 mandatory sheets that need to be created in every excel form and each
sheet as certain mandatory columns that need to be created within each sheet

The three mandatory sheets along with mandatory columns are as follows:
a. Survey: the three mandatory columns under this sheet are type, name and

label
b. Choices: the three mandatory columns under this sheet are list name, name

and label

https://drive.google.com/file/d/1hGJvpQmjhIs-yhpsf7o18cHOGMAI4AGH/view?usp=sharing
https://drive.google.com/file/d/1hGJvpQmjhIs-yhpsf7o18cHOGMAI4AGH/view?usp=sharing


c. Settings: the two mandatory columns under this sheet are form_title and
form_id

d. Some important rules:
i. The name of every sheet and column should be in lower case

ii. Name of the excel file cannot start with a number
iii. The name of the excel file cannot contain spaces

3. Basic structure of the sheets
a. Survey sheet:

i. Contains all the form contents such as the questions, the question
type, the appearance of the questions, the constraints etc.

ii. Column Descriptions -
1. Type: enter the question type in this column (You can find all

the different question types here)
2. Name: give a unique name to each question, use lower case

only and _ (underscore) as a separator
3. Label: enter your question in this column
4. Some additional useful columns are as follows:

a. Hint: Enter instructions related to the question in this
column

b. Required: If the question is mandatory, enter "yes" in
this column

c. Appearance: commands related to appearance of the
question appear in this column

i. Additionally, for defining logic, operators and styling, refer to the
following documentation -

1. Form Logic
2. Form Styling
3. Form Operators

b. Choices sheet:
i. Contains the choices/options for all multiple choice questions

ii. Column Descriptions -
1. List name: Enter each of the list names that was created in the

“survey” sheet
2. Name: Give a unique name to each of your choices in the list
3. Label: Enter each choice that will be visible to the user in this

column

c. Settings sheet:

https://docs.opendatakit.org/form-question-types/
https://docs.opendatakit.org/form-logic/
https://docs.opendatakit.org/form-styling/
https://docs.opendatakit.org/form-operators-functions/


i. Contains the form name, unique form id and form version
ii. Column Description -

1. Form_title: Enter the title of the form that will be displayed to
the user

2. Form_id: Specifies the table name

Other Details to Note

1. Question Types used in UCI
a. note: for a note/text, doesn’t produce a question
b. text: for questions that have a free text response
c. integer: for questions that have a whole number as response
d. select_one: for MCQs that have only one answer. This is followed by the name

of the list of options that will be presented to the user.
a. In case of select_one, The name of the list cannot contain spaces,

special characters other than – and _ (dash and underscore)

Note: ODK supports many more types of questions, however these are the question types that
are currently enabled for the UCI use cases.

2. Grouping Of Questions
a. This is useful to group questions together
b. Begin group:

i. Insert “begin group” row above the first question of the relevant group
of questions

ii. Assign name and label to the group
iii. The text in the label column will appear above the group of questions

c. End group:
i. Insert “end group” row below the last question of the relevant group

of questions
ii. All other columns to be blank in the “end group” row

Note: Groups can be considered as a
combination of ‘Else IF’ statements,
where admin can define the complete
trajectory of conversation based on
user inputs.



3. Validating And Constricting Responses
a. Adding contraints/validations -

a. To validate or restrict response values, use the ‘constraint’ column.
b. You can add constraints in the following manner -

i. Constraint expressions often use comparison operators and
regular expressions.

ii. The entered value of the response is represented in the
expression with a single dot (.).

iii. Examples -
1. . >= 18 (True if response is greater than or equal to 18)
2. . < 20 and . > 200 (True if the response is between 20

and 200)
3. .<${abc} (True if the response is less than the response

given for ‘abc’ question)

b. Constraint message - The constraint expression will be evaluated when the
user advances to the next screen. If the expression evaluates to True, the form
advances as usual. If False, the form does not advance and the
constraint_message is displayed.

4. Requiring Responses
a. By default, users are able to skip questions in a form. To make a question

required, put yes in the required column.
b. Required questions are marked with a small asterisk to the left of the

question label. You can optionally include a required_message which will be
displayed to the user who tries to advance the form without answering the
question.

5. Conditionally Showing Questions
a. The ‘relevant’ column can be used to show or hide questions and groups of

questions based on previous responses.
b. If the expression in the relevant column evaluates to ‘True’, the question or

group is shown. If ‘False’, the question is skipped.
c. Often, comparison operators are used in relevant expressions. For example:

i. ${age} <= 5 (True if age is five or less)



ii. ${has_children} = 'yes' (True if the answer to has_children was yes)
d. Relevance expressions can also use functions. For example:

i. selected(${allergies}, 'peanut') (True if peanut was selected in the
Multi select widget named allergies)

6. Filtering Options In Select Questions
a. To limit the options in a select question based on the answer to a previous

question, use a choice_filter row in the survey sheet, and filter key columns
in the choices sheet.

b. For example, you might ask the user to select a state first, and then only
display cities within that state. This is called a cascading select, and can be
extended to any depth. This example form shows a two-tiered cascade:
district and block

Survey :



Choices:

7. Additional instructions for creating a Bot form:
1. The last item in the branch must be of the question type text
2. The name of last item in the branch must start with ‘eof_’ (As shown in

Reference Image 1)
3. In the choices sheet, the name of options must be the exact numerical value

that we are asking users to select and the label for them should start with the
same numerical value. (As shown in Reference Image 2)

Reference Image 1:

Reference Image 2:



3: FORM CONVERSION FROM XLS TO XML
a. Once the excel sheet is created and finalized, convert it to XML using this converter

Sample XML would be as follows.

b. Click on ‘Download XForm’ to download the XML version of the ODK form
c. Click on ‘Preview in Browser’ to test the XML form

https://opendatakit.org/xlsform/
https://drive.google.com/file/d/1QnMnU62FqHl2MEYHjCAepGvYWU6se5U7/view?usp=sharing

